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Abstract~A Cosserat model is developed in nonlinear form to describe the appearance of lower
frequencies in seismic waves spectra, As in the Ericksen theory of liquid crystals, elastic and viscous
rheological elements are combined to get sensible results. The translational degrees of freedom are
described by linear elasticity but the rotational kinematically independent motion is governed by
the nonlinear elastic potential and linear viscosity.

The dynamics of linear perturbations show that the longitudinal translations and rotations
both decouple completely from other motions. These rotations represent local oscillations due to
the existence of the potential and they do not propagate. However, the linear transverse translations
and microrotations are coupled. It is shown that they describe seismic and acoustic waves,

In the nonlinear case these motions demonstrate some new interesting phenomena. For instance,
if the propagation of the harmonic elastic wave is considered the microrotations behave like
nonlinear oscillators excited by the external harmonic force. Thus the system produces the same
effects as those obtained recently for the Duffing type equation with the help of the theory of
attractors. This means that the initial harmonic wave generates secondary waves with lower frequenc­
ies. These secondary frequencies are usually commensurable with the initial ones. Numerical results
show that the phenomenon still takes place if the initial wave consists of continuously distributed
harmonics.

The generation of lower frequencies in granular media has been observed and reported but the
theoretical explanation was lacking since it was thought conventionally that weak nonlinearities
were able to produce higher frequencies only. t!') 1998 Elsevier Science Ltd. All rights reserved.

I. INTRODUCTION

The Cosserat theory (Cosserat and Cosserat, 1909; Ericksen and Trusdell, 1958; Trusdell,
1966) of kinematically independent dynamics of microstructure leads essentially to dynam­
ics of two interpenetrating continua with interaction of a moment of momentum type. This
model is close in spirit to the Frenkel-Biot poroelasticity (Biot, 1956; Frenkel, 1944) where
the difference in translational velocities of solid and fluid particles is a basic ingredient.
This mathematical construction is extremely useful for the dynamic description of naturally
fragmented materials such as rock and soil. It serves to represent properties of real seismic
waves, of ground noise, etc., which cannot be treated using conventional elasticity.

The significance of a continuum with microstructure in geomechanics must be esti­
mated in comparison with other possible models. However a model with microstructure
can be utilised in a wider range because of a multiscale character (in time and space) of
geological processes. The key point in applications is to combine properly the rheological
laws at different scales. The Ericksen-Leslie model of a liquid crystal (Ericksen, 1967;
Leslie, 1968) can be used as an example of a proper approach.

We should like to stress that nonlinear version of the theory explaining many natural
phenomena (Nikolaevskiy, 1996; Nikolaev and Galkin, 1987) reduce to equations which
are well known in modern mathematical physics.
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2. BASIC EQUAnONS

The propagation of the waves in media with microstructure possesses some peculiar
features due to the interaction of the translational and rotational degrees of freedom. In
the present work we investigate the wave processes when the macroscopic motion is purely
elastic and the microscopic motion is dissipative.

Previously models were considered in which the macroscopic flow was viscous and the
dynamics of the microrotations were described by equations of the nonlinear elasticity type
(Dinariev and Nikolaevskii, 1995a, b).

Here we consider the medium governed by the following sets of equations, the mass
balance:

the momentum balance:

the moment of momentum balance:

dp
pdt +PVi.i = 0,

dv
p dt' = PijJ+!,

(1)

(2)

and the energy balance:

(4)

where the conventional summation is used for repeated indices.
We use an inertial frame ofreference with time t and coordinates Xi> and the notation:

p is the mass density, Vi the velocity, Pi; the total stress tensor,! the body force, J the scalar
(for simplicity) moment of inertia (per unit volume), which is a tensor in a general case, ni

the total angular velocity, ni; the couple stress tensor, mi the moment of momentum,
K = {WiVi+JO,.QJ/2 the kinetic energy, U the internal energy (per unit mass), qi the heat
flux, B the heat production. The material time derivative is

d a a
-=-+v·­
dt at 'OXi

and Bijk are components of the alternator tensor.
Introduce the displacement vector Ui = Ui (t, x) and the total rotation vector CPi = CPi

(t, x). Then the velocities can be expressed as the derivatives

dUi

Vi =dt'
dcpi

ni=ctt·

The system of equations (1 )-(4) serves to determine the following variables:

p = pet, xJ, Ui = ui(t, xJ, CPi = CPi(t, xJ, T = T(t, x)

where T is the temperature. In order to have complete formulation of the problem it is
necessary to add to the constitutive relations, which determine the quantities Pij, nij, qi> m i ,
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U. We shall formulate the constitutive relations in accordance with irreversible ther­
modynamics (de Groot and Masur, 1962). Assuming infinitesimal displacement, the
approximations are, for velocities

for the strain tensor

and for the vector of relative rotation

Suppose that the internal energy U depends on T, Gij, cp1 only, then from (l) the mass
density P changes are related to the strain tensor by

where Po is the initial density and bij are components of the unit tensor.
The Gibbs equation corresponding to our choice of the thermodynamic parameters of

the system is

(5)

Here s is the entropy (per unit mass), (Jij is the elastic stress tensor and Vi is the elastic
moment of momentum generated by the microrotations. The following expressions are
consequences of eqn (5) :

(Jij = (:u.), Vi = (:~).
G'l s CP I S

The entropy time derivative is given by eqns (2)-(6)

where Q1 = o,cp1 is the relative angular velocity. The viscous stress tensor

(6)

(7)

is defined as the difference between total and elastic stresses. In general it is composed of
the symmetric r~j = rW) and the antisymmetric part rij = rWI'

The entropy production (Truesdell, 1972) is given by

which can be expressed with the help of (7)

(8)

According to the second law of thermodynamics, this quantity must not be negative
(Trusdell, 1972) :
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IT? O. (9)

We consider only dynamical processes which have zero dissipation in deformation processes
governed solely by translational motions, that is when r!j = O. Then introducing the notation

ljJ = Qi.i, ljJij = Q(ij)-(lj3)c5ijljJ,

y = ni,h rij = nij - (I/3)c5ijY'

we reduce expression (8) to the form

According to the Onsager principle (de Groot and Masur, 1962) this expression and the
rotational invariance (The Pierre Curie principle) yields the following linear kinetic laws
for dissipative fluxes:

where we introduced the kinetic coefficients, aj, a2, /3,. According to (9) the inequalities

have to be valid.
In order to make the next step it is necessary to specify the functional form of the

internal energy U.

3. LINEAR DYNAMICS CASE

Consider small dynamical perturbations of the initial state

P = Po, T = To, Ui = 0, ({J,. = O.

In the lowest second-order approximation for displacements the internal energy is

where the elastic potential W for the microrotations is

(10)

(11)

(12)

and AI, )'2' ( are constants. The initial state (10) is assumed to be stable, which implies the
inequalities

The corresponding elastic stress components are determined by (6), (11), (12) are the linear
approximations

(13)

Denote the double Fourier transform of any fieldJ = J(t, x,.) as
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where wand k i are, respectively, frequency and wave numbers, and introduce the notation

Equations (2)-(4) and (13) after linearization yield the system of equations for the Fourier
transforms:

0= iwpovw-ikjpljF = Ai~UjF+Bi~q>jF>

0= iWJQW+CijkPjkF- ik/TrijF - M w

= A5UjF+B5q>jF+ e?9F,

(14)

The coefficients of this system are tensors of the secondo, first- and zero-order. They can be
represented in a form which explicitly takes into account SO(3)-invariance by decomposing
them into the sum of fixed linear independent tensors:

Aij = A,l(jlj + A,2kikj + A,3 cljk ikb

B~i = B" (jlj + B,2 kikj + B,3 cijkikb

The scalar coefficients A'P, B"P, e2
, B3

, e3 can be calculated directly from (2)-(4) :

12 ' 1 1.
A =1"+2A2+4(IWPl+0,

1 I
B

I3
=2(iwP~+0, A

23 = 2(iWPI +0,

I
B 2l = iw R +[ -Jw2+ -a iwk2

1'1. 2 2 ,

To investigate different modes we calculate the determinant of (14)

where

PI = All +k2A 12 =(A l +A2)k2-W2pO'

P2 = B21e3+(B22e3+B3e2)k2,



4580 O. Yu. Dinariev and V. N. Nikolaevskii

The general dispersion relation ~ = 0 for the wave velocity can be decomposed into the
three equations

P~=O, a=I,2,3.

The first equation PI = 0 evidently describes the longitudinal-translation waves which do
not couple with other motions. The equations P2 = 0 and P3 = 0 describe the longitudinal
rotational waves and the coupled transverse translational-rotational waves corre­
spondingly.

In order to demonstrate this, first consider the dispersion relations in case of zero
dissipation (0 == 0) :

(15)

This equation has the solution

(16)

which corresponds to the rotational oscillations. Further, we have

(17)

Assuming a solution in the form

(18)

eqn (17) becomes

It follows that there are no wave solutions in the frequency range

but solutions exist in the range

WI < Iwl and Iwl < W2'

The former are called the "acoustic" (high frequency) waves. They correspond to micro­
structure (fragment scale) oscillations. The latter are called the seismic waves and can be
observed by conventional tools in seismology.

Dissipation affects the solutions ofeqns (15) and (17). For simplicity assume that there
is only one nonzero viscosity

{3 = {31 > 0, (19)

and the dissipative terms in the dispersion relations are relatively small. Then the corrections
of the first-order to (16), (18) are the following:
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So the friction coefficient [3, which determines the viscous interaction of translational and
rotational motions, accounts for damping of fragment (microstructure) oscillations and
attenuation of the transverse waves.

4. NONLINEAR SPECTRA TRANSFORMAnON

N ow we turn our attention to possible nonlinear effects. Let the processes be isothermal
and depend only on one space coordinate x = Xl' and let the variables be represented in
the following functional form

Assume nonlinearity of the model by taking into account the higher-order terms in eqn
(12), then

(20)

The stability condition of the initial rest state (10) requires that

Again we consider the model with only one viscous coefficient (19). Equations (2) and
(3) give us coupled equations for u(t, x), cp(t, x) as the unknown variables:

(21)

(22)

where

Solutions of (21) and (22) can be found by the following procedure:

(a) construct a solution of (21) with zero right-hand side,
(b) substitute this into the right-hand side of (22) and find the solution for cp,
(c) substitute the latter into the right-hand side of (21) and find the correction to u, and so

on.

This procedUre is essentially one particular way to implement the nonlinear perturbation
technique. It produces the convergent sequence, if the right-hand side in (21) is sufficiently
small in comparison with every term in the left-hand side.

Let us consider what happens when at the first step we have a harmonic wave
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u = -ao cos(wt-kx), w = kV, V 2 = 2po/A2' (23)

Substituting (23) and (22), we obtain the Duffing type equation for the damped nonlinear
oscillator with harmonic external force. After some transformation it can be reduced to the
canonical form

0;<1> +Ao~<1> +90<1> +91 <1>2 +<1>3 = Aosin(2n(I1-l1o»,

qJ(t, x) = G 1;2JI/2 (2n) - I w<1>(I1, X),11 = (2n) -I wt, 110 = (2n) -I kx,

A = 2nf3w- 1J- I , 90 = 2(1-1/2 W -l ri l ;2,

(24)

Equation (24) has been investigated in the context of the theory of attractors (Feigenbaum,
1980), which determines the general properties of solutions. Any solution can be determined
by the point in the phase space 0, o~O (for example by the corresponding values at 11 = 0).
The dynamics of (24) is adequately represented by the Poincare map in the phase space

which transforms the phase point into the point given by the solution at the end of the
period. This map is diminishing any phase volume by the factor e- i

. Therefore, the stable
solutions (attractors) are represented in the phase space by the sets of zero phase volume.
A stable solution can consist of a finite number of phase points (so-called simple attractors)
or of infinite number of points (so-called strange attractors). In the first case the solution
is periodic with an integer period n. In the second case the stable solution is stochastic-like.

In both cases the response of the medium with microstructure to the initial wave (23)
can contain lower frequencies. In the case of the simple attractor the response can be
decomposed into the discrete set of harmonic oscillations with the spectrum (mw/n) where
m is an integer. This is a new phenomenon. Conventionally the nonlinear terms generate
higher frequencies. Experimentally the appearance of lower frequencies has been observed
(Vilchinskaya and Nikolaevskii, 1984; Guschin et al., 1994; Bubnov et al., 1994) in the
field and in the laboratory, but with great disbelief due to absence of any theoretical
background.

Let us discuss the possible values of n. According to Feigenbaum (1980) if to change
the parameters ao, w of the initial wave (23) one can encounter the period doubling
bifurcation sequence in the response of the medium with microstructure. However, a finite
readjustment of the solution (not a mere bifurcation) can happen with any change of n.

Consider an attractor solution 0 = 0 0(11-110) of (24) and substitute it into (21). Then
the correction to the initial wave (23) is described by

which can be solved explicitly:

Thus, the translational wave can really contain lower frequencies due to microrotations.
Now seismic signals are usually composed of harmonics distributed continuously over

some frequency range. Let 8.w be the typical width of this distribution, then the quantity
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characterizes the duration of the signal. The existence of an attractor can still be exhibited
by the system until!* will be negligible in comparison with the time (2J{J-I) of the rotational
oscillations.

Let the coefficients of function (20) be such that (20) has the form

The initial signal is characterized by the strain 0 = o(t) which is distributed over a frequency
range:

where

h(f) = exp [- (In(f/j~)lln(I + (~/fo)W], 01 = fh(f) df,

and, say fa = 2000 Hz. [This frequency is chosen for comparison with the laboratory
experiments (Guschin et al. 1994; Bubnov et at. 1994)]. The results of the computation are
represented by the spectral density function, where the spectral density of any function
g = get) is defined by the expression

S(f) = Ifexp( - i2nft)g(t) dtl·

In Fig. 1 the spectral density of the initial signal is normalized at the maximum value. The
frequency distribution width ~ is equal to 150 Hz.
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Fig. I. The normalized spectrum of the initial signal.
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Fig. 2. The period doubling in the response spectrum.
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Fig. 3. The response spectrum. The broad peak looks like period tripling.

o~--+_--_l_....!...L~Y...Y-___+_~~~~!!!!!!!!!!~

o

OJI ------------ - j

OJI --------------

0,2 -----

D.4 ---------

In Figs 2--4 the spectral density for the rotational response ({J(t) is normalized also at
the maximum value_ Parameters for these numerical experiments are chosen also in accord­
ance with (Guschin et al., 1994; Bubnov et al_, 1994) as follows:

Figure No. 2 3 4
J, kg/m 10- 9 10- 9 10-9

2J/[3,s 10- 2 10- 2 10- 2

Wo, kgj(ms2
) 200 100 100

[3 10-2 10- 2 10- 2

10' Hz 2000 2000 2000
~, Hz 150 150 1
GO 10-3 2.5 X 10-3 2.5 X 10- 3

Evidently Fig. 2 represents the period doubling. But period doubling is not the only option
as we mentioned earlier, and as can be seen in Fig. 3.
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Fig. 4. Period tripling in the response spectrum in the case of a narrow frequency distribution in the
initial signaL
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Fig. 5. Experimental initial signal spectrum measured near the source. The data was taken from
Guschin et al. (1994).

Figure 3 corresponds to a more complicated case but the maximum amplitude at 660
Hz means period tripling. It becomes even more clear if we make the frequency distribution
narrower while other values are the same, as shown in Fig. 4.

In order to compare the numerical results with experiments we show in Figs 5 and 6
two experimental curves published in (Guschin et af., 1994). These curves show the spectral
density of a signal propagating in soil (wet sand). The spectral density is normalized at the
maximum value as before. The transformed signal in Fig. 6 looks very much like period
tripling.

This example is only one of many from (Guschin et aI., 1994; Bubnov et af., 1994)
which allow us to conclude, that the numerical results given in Figs 2 and 3 qualitatively
agree with the experiments. We see that a nonlinear medium with microstructure dem­
onstrates new theoretical phenomena which are in good agreement with observations
for granular materials. This provides a stimulus for further theoretical and experimental
investigations in this direction.
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Fig. 6. Experimental signal spectrum measured at some distance from the source. The data was
taken from Guschin et al. (1994).
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